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Université de Reims Champagne-
Ardenne, France
Xuefeng Zhao,
Sichuan University, China
Ana Soares,
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In the field of biomaterials, an endosseous implant is now recognized as an

osteoimmunomodulatory but not bioinert biomaterial. Scientific advances in

bone cell biology and in immunology have revealed a close relationship

between the bone and immune systems resulting in a field of science called

osteoimmunology. These discoveries have allowed for a novel interpretation of

osseointegration as representing an osteoimmune reaction rather than a

classic bone healing response, in which the activation state of macrophages

((M1–M2 polarization) appears to play a critical role. Through this viewpoint, the

immune system is responsible for isolating the implant biomaterial foreign

body by forming bone around the oral implant effectively shielding off the

implant from the host bone system, i.e. osseointegration becomes a

continuous and dynamic host defense reaction. At the same time, this has

led to the proposal of a new model of osseointegration, the foreign body

equilibrium (FBE). In addition, as an oral wound, the soft tissues are involved

with all their innate immune characteristics. When implant integration is viewed

as an osteoimmune reaction, this has implications for how marginal bone is

regulated. For example, while bacteria are constitutive components of the soft

tissue sulcus, if the inflammatory front and immune reaction is at some

distance from the marginal bone, an equilibrium is established. If however,

this inflammation approaches the marginal bone, an immune osteoclastic

reaction occurs and marginal bone is removed. A number of clinical

scenarios can be envisioned whereby the osteoimmune equilibrium is

disturbed and marginal bone loss occurs, such as complications of aseptic

nature and the synergistic activation of pro-inflammatory pathways (implant/

wear debris, DAMPs, and PAMPs). Understanding that an implant is a foreign
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body and that the host reacts osteoimmunologically to shield off the implant

allows for a distinction to be drawn between osteoimmunological conditions

and peri-implant bone loss. This review will examine dental implant placement

as an osteoimmune reaction and its implications for marginal bone loss.
KEYWORDS

bone healing, bone regeneration, osteoimmunology, immune reaction,
osteomechanobiology, osteometabolics, osteoneurology, revascularization
1 Introduction

Osseointegration is needed for oral implant function.

Provided that properly trained individuals place clinically

controlled oral implant systems, the general outcome is most

positive with 10 year failure rates varying between 0-4% (1), and

osseointegrated oral implants have in case studies been shown to

function over 50 years in the body (2). However, the original

view of osseointegration as just a simple bone repair process after

osteotomy does not appear to be valid. As demonstrated

originally by Donath and co-workers (3), an implant is

recognized as a non-self material by the immune system of the

body, i.e, in successfully osseointegrated cases. This was recently

demonstrated through a quantitative polymerase chain reaction

(qPCR)- and histological animal model study where the host

established a clear and regulated inflammatory response which

thereafter shielded-off the implanted biomaterial in bone (4).

Therefore, what is seen when implants are placed in the hard

tissues is an Osteoimmune reaction, a term that would better

describe actual tissue reactions than the original term

osseointegration. A recently published suggested definition

reads “Osseointegration is a foreign body reaction where

interfacial bone is formed as a defense reaction to shield off

the implant from the tissues” (5).

In the vast majority of cases the immunological/

inflammatory response mounted by the host will lead to

implant integration rather than its rejection. Due to the

immunologically and mechanically stimulated bone shield-off

reaction and the osteoimmune/immunological equilibrium that

is established in the case of oral implants, clinicians may load the

implants that will then survive for many years in function.

However, the immune and healing responses are not only

transient one-time reactions, but instead represent a temporal

continuum of dynamic hard and soft tissues changes (6).

Therefore, today the focus is on modulation of the

osteoimmune microenvironment at the bone-implant interface

(7–9), understanding that if the host-biomaterial equilibrium

becomes perturbed, the result can be marginal bone loss (MBL)

or peripheral bone loss around the implant. If the temporal shift
02
in equilibrium at the marginal bone is limited, MBL may be

small and does not necessarily challenge the implant’s long term

survival i.e a new host-biomaterial equilibrium is established (6).

However, if continuous and of substantial magnitude, the

provocation may result in a shift in the immune/re-balancing

response from shielding off the implant to rejection of it

(Figure 1). Taken together, these observations confirm

differences between the teeth of an individual and implants –

rules that apply to the former are generally irrelevant for the

latter and vice versa. MBL around implants, in this context,

should be considered a condition rather than a disease (10, 11).

This paper aims to present an overview of osteoimmunology of

relevance for osseointegration and threats to this condition, and

to furthermore, analyze the situation from a bone cell/tissue

point of view. We start with an overview of osteoimmunology

and oral microbiology and discuss then perturbation of

osteoimmune responses and marginal bone loss from different

perspectives. The importance of the implant passivation layer is

presented as well as potential sequale of primary and secondary

corrosion phenomena. The paper ends with concluding remarks

centered on the paradigm shift that is the result of a greater

understanding of osteoimmunology, a core area of knowledge

for interpreting implant outcome.
2 Basics of osteoimmunology

Traditionally, three types of bone cells have been described

in bone tissue; osteoblasts, osteoclasts and osteocytes.

Osteoblasts are responsible for bone growth and osteoclasts

favor bone resorption. Activities of both depend on signaling

cues (cytokines) and cell-cell interactions. Especially prominent

is the receptor activator of nuclear factor k B (RANK)-receptor

activator of nuclear factor-kappa B ligand (RANKL) interaction.

Osteocytes, which act in response to mechanical stimuli largely

control the osteoclastic/osteoblastic activity through both net

bone growth (via e.g. parathyroid hormone PTH, osteocalcin,

mechanical stimuli and Wnt ligands) and bone resorption (via

e.g. mechanical unloading, sclerostin and dickkopf signals (12)).
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The always ongoing bone remodeling process has thus

traditionally been described as the carefully coordinated

interaction between osteoblastic, osteocytic and osteoclastic

activities, a process that is carried out by active basic
Frontiers in Immunology 03
multicellular units (BMUs) (13). Further, it has been described

that the activity of RANKL and consequently osteoclastogenesis,

is controlled via production of osteoprotegerin (OPG) by

osteoblasts and other stromal cells. Hence, the OPG/RANKL
FIGURE 1

A general overview of immune system actions in relation to oral implants. Computerized image of human face.
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balance has been proposed as the determining factor to maintain

bone density (14).

In addition, a number of molecular and cellular mechanisms

constitute a permanent interaction between bone tissue and the

immune/inflammatory system. In this sense, the cells of both

systems share common origins, since osteoclasts originate from

stem cells of the monocyte-macrophage hematopoietic stem cell

lineage and osteoblasts from the mesenchymal stem cell lineage

(15). Furthermore, lymphocytic, dendritic cell and macrophage

cytokines are all known to act as local bone remodeling

regulatory factors (16). The molecular basis of the underlying

mechanisms was identified only 20 years ago with the discovery

of the essential role of the RANK/RANKL axis in bone and

immune cell physiopathology. From that moment, the term

“osteoimmunology” was coined to define a new discipline

covering the interplay between bone and the immune

systems (17).

A rapid evolution in our knowledge of immunology has

taken place during the past decades. The adaptive immune

response (mainly via T and B cells) was long thought to drive

innate immunity. However, immunology had it backwards, as

now macrophages and the innate immunity are increasingly in

the focus of attention, not least in oral implantology. Indeed,

because of the discovered macrophage polar-opposite kill and

repair activities, the independence of these responses from T

cells, and that these types of responses stimulate Th1- or Th2-

type responses, macrophages were renamed M1 and M2 to

highlight the importance of innate immunity (18). In recent

years, it is also understood that bone formation and remodeling

are influenced by the inflammatory state of the local

microenvironment. In this regard, the eventual phenotypic

switch of M1 to M2 macrophage seems to play a crucial role
Frontiers in Immunology 04
in modulating osteogenesis (19). Moreover, it has been proposed

that an efficient and timely switch from M1 to M2 macrophage

phenotype facilitates an osteogenic cytokine release and with it

the formation of new bone tissue around implanted

biomaterials. This is the basis for the concept of an

osteoimmunomodulatory material (20). This was confirmed

for titanium implants e.g. by Trindade´s works since 2018

(significantly up-regulated ARG1 gene expression around

titanium at 10 days) (4, 21, 22). In relation to this, it has been

postulated that mainly bone macrophages (osteomacs) would be

responsible for the recruitment of osteoprogenitor cells to build

new peri-implant bone, since the surface of the titanium implant

would directly induce differentiation towards a pro-regenerative

M2 macrophage (23). In addition, it is known that once

macrophages acquire a functional polarization, they still retain

the ability to continue changing in response to new

environmental stimulation (24). This was shown in a recently

detailed mapping of the mouse mandibular alveolar bone where

a unique immune microenvironment was demonstrated under

active bone remodeling and immunomodulation (25, 26).

All these findings indicate that oral osseointegration is

maintained in a dynamic and likely immunologically dynamic

environment. With this in mind, a new dynamic model of

osseointegration has been proposed to represent an interplay

between the complex osteoimmune/inflammatory events and

oral implants, coined the Foreign Body Equilibrium (FBE). This

model has in turn allowed a view of marginal bone loss (MBL)

around oral implants to be a result of FBE susceptibility to peri-

implant environmental conditions (27), (Figure 2). Therefore,

MBL can be viewed as a biological, and maybe transient,

imbalance in the local immune/inflammatory state (28)

adjacent to artificial devices instead of as a disease (10).
FIGURE 2

Hypothetical model for osseointegration dynamics. FBGC: foreign body giant cells. From Trindade, et al. Ref. (27).
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3 Osseointegration and
oral microbiology

The first study in which a direct bone anchorage to titanium

was suggested as a clinical possibility was published in 1969 (29),

and the term “osseointegration” was first coined in 1977 (30).

After that and based on classical bone physiology and fracture

healing studies, oral implants were considered bio-inert (31) and

were considered similar to teeth by some investigators. Since

teeth may suffer from periodontitis, it has been assumed that oral

implants are also subjected to a hereditary inflammatory disease

with relation to bacteria. Hence, the term peri-implantitis was

introduced and seen as a bacterially related disease of oral

implants (32). Over the last two decades this opinion about

MBL has been accepted at several meetings arranged for the

purpose of consensus (33). After these conferences, the

discussion has continued “mirroring” the progression of

gingivitis to periodontitis where peri-implant mucositis is

assumed to precede peri-implantitis. However, features or

conditions characterizing the conversion from peri-implant

mucositis to peri-implantitis have not been identified, despite

the scientific advances of the last decades (34). However, during

the latest years large progress has been made in oral

microbiology, with significance also to implants. For example,

oral bacteria have the capability to produce mucosa and bone

degrading peptides (35, 36), but are largely balanced by the

presence and activities of B-cells, neutrophils, and different T-

cells and their molecular products. In addition, the inherent

immunomodulating role of the biomaterial and its interplay with

the host’s innate immunity has been ignored. In fact, the fate of a

bone implant appears to be largely determined by its effects on

the host immune response. In general, persisting inflammation

impedes tissue repair and favors bacterial overgrowth.

Therefore, a balanced inflammatory environment around a

biomaterial is critical, since both downregulated and excessive

inflammatory responses lead to suboptimal bone regeneration

clinically (37).
4 Perturbation of
osteoimmune reactions

There appears to be two principal reasons for perturbation of

the osteoimmune equilibrium in the area of the marginal bone

around osseointegrated implants; septic and aseptic reactions:
4.1 Septic reactions

Currently, MBL is considered mostly to be due to septic

reactions as evidence has emerged that bacteria can be present

also in bone tissue itself. Apparently healed alveolar bone in the
Frontiers in Immunology 05
dental implant bed displayed bacterial species that further were

found locally in the bone even in som cases of tooth agenesis (38,

39). The assumed mechanism of septic causes for MBL is

bacterial recuitment of inflammatory bone resorbing cells (40)

that may result in implant failure if the infection is maintained.

The plethora of bacteria everywhere in the oral cavity may be

interpreted as a substantial threat for implant survival. However,

in reality oral implants fare quite well despite all bacteria.

Analyzing situations where bacteria are known to cause

clinical problems with implants include the case of oral

implants placed without simultaneous antibiotic coverage, with

a consequent increase in implant failure rates (41). In addition,

bacteria can secondarily cause MBL (40) in the case of oral

implants where a failing process has already been initiated for

other reasons. It is of particular interest that these two situations

with known possibilities for infection occur either prior to

completed osseointegration or once the process of

osseointegration failure has already begun. Considering the

very high implant survival rates over long periods of time (42),

such observations indicate the presence of very strong bacterial

defense mechanisms as an inherent capacity of the body, and

hence favor osseointegration. This bacterial defense was initially

regarded synonymous with the establishment of hemi-

desmosome formations (30). More recently, cellular

mechanisms have been regarded as the reason for the defense

such as a combination of inflammatory and immune cell types or

keratinocytes (28, 43). Other potential mechanisms coupled to

the defense may be associated with the immune reaction per se, a

reaction inevitable in the case of oral implant placement.

Another septic reaction close to implants may be seen

originating from bacterial leakage between implant parts.

However, this type of septic reaction is local and is not known

to, on its own, generalize to attacks on the osseointegration

process (26). In other words, presence of bacteria is inevitable in

the oral cavity, but particular defense mechanisms may guard

against bacterial actions in form of marginal bone resorption.
4.2 Aseptic reactions

Immune homeostasis of alveolar bone can be directly

affected by microorganisms as noted above, However, new

evidence shows that mechanical stimulation could promote the

conversion of myeloid-derived monocytes into an activated

state, suggesting that occlusal force could drive the immune

microenvironment difference between alveolar and long bone. In

fact, within the complex immune sensing microenvironment of

the alveolar bone (44), alveolar macrophages are critical during

the early stages of osseointegration (45). Therefore, more recent

research has pointed attention to a largely aseptic reason for

MBL. For example, high levels of oxidants are produced during

chronic hypoxia and inflammation leading to bone loss. This

leads to tissues or bone becoming hypoxic by losing their
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vasculature when exposed to overpressure. Conversely, when

insufficient pressure is exerted on bone due to lack of mechanical

activity, oxidant production also increases (46). As described

above, bone cells such as osteoblasts and osteoclasts have been

identified as not only bone building and bone degrading cells but

also as a functioning part of the immune system (47, 48). The

skeletal system and immune- and inflammatory systems seem

independent of one another but, in fact, are inseparable and

closely related (49). The aseptic mechanism of MBL may simply

be viewed as the immune system stimulating macrophage and

osteoclastic function more than osteoblastic activity which

inevitably will lead to bone resorption. Osteoblasts and

osteoclasts have long been known to be functionally coupled

to one another (50). More recently, the data is overwhelming

that both these cells act as part of the broader immune system

(51). Other factors known to cause MBL such as unsuitable oral

implant designs (25), clinical handling (activities of individual

surgeons/restorative dentists (Figures 3A, B) (52) or,

pharmaceutical treatments (53) are in all probably aseptic in

nature. Other aseptic causes of MBL may be disuse atrophy and,

possibly, resorption due to old age of the implant host. Most

certainly, there are many cases when it is uncertain whether the

origin of MBL is septic or aseptic or their combination.
4.3 Ligature model in question

A great number of “ligature studies” have been published,

allegedly serving as the experimental approach to prove the

bacterial origin of MBL (54). However, when ligatures were

placed around implants in tibial sites, not known to harbor any

bacteria, some interesting findings were reported. Firstly, there

was a clearly enhanced immunological response to implants

with ligatures compared to control implants without ligatures.

Secondly, despite the apparent absence of bacteria, MBL was

observed anyhow around implants with ligatures, but not

around controls without ligatures (55). These findings from

long bones of animals indicate a general relevance with respect

to the noticed increase of immune reactions to ligatures, a new

observation that in all probability would be present as a primary

reaction also in maxillofacial bone. However, in the latter site

there are numerous bacteria too and, particularly if the immune

system is repeatedly provoked by the placement of new ligatures

at two week intervals (54) as is commonly done, a rejection

phenomenon will occur with due lowering of the bacterial

defense leading to implant failure. Researchers in these cases,

may not have known about nor appreciated the immune

reactions to implants and ligatures/ligature placement in the

past, hence they have generally not been concerned with this

strong provocation of the immune system. In light of our new

knowledge however, ligature studies appear to be excellent at
Frontiers in Immunology 06
provoking an immune dis-equilibrium and initial aseptic bone

resorption. When the ligature-provoked immune system

switches over from a shield-off reaction to rejection, the

contribution of the ligature trauma and ligature accumulated

bacteria to the observed bone resorption is unknown but

appears to be similar to what is observed around failing

clinical implants.
A

B

FIGURE 3

(A) This figure depicts the performance of one individual surgeon
with respect to the cumulative, average, annual loss in marginal
bone that was associated to this clinician (squares) whereas the
triangles depict the average annual performance of another oral
surgeon who saw much greater accumulated bone loss than his
peer, despite them using the same implant type in similar
patients. Both these surgeons were active at the University of
Toronto, Canada. (B) The squares in this figure represent the
cumulative, annual loss in marginal bone associated to two
restorative dentists active at the University of Toronto, Canada
some 20 years ago. The bone loss curves were constructed so
that they started from zero levels by the investigator S Ross
Bryant. Figures (A, B) indicate that if a given patient had the poor
luck to be treated by the least good surgeon and followed up by
the least good prosthodontist, this meant an average
accumulated loss of marginal bone of 2 millimeters at about 3-4
years after implant treatment. These curves support the notion
that marginal bone loss around oral implants need not always
have a septic background. Created using data from S R Bryant,
Ph D thesis, University of Toronto Canada.
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5 Stages of osseointegration failure

During the last years, the concept of osteoimmunology has

been highlighted, and osseointegration seems to be a foreign

body reaction (FBR) equilibrium whose mechanism depends on

a complex cellular heterogeneity and dynamic changes within

the implant-mediated osteoimmune microenvironment. This

was demonstrated in a recent study that mapped the general

osteoimmune microenvironment around the bone implant

through single cell RNA sequencing, scRNA-seq (56). Under

this biological context, it has been suggested that primary (early)

failure, MBL, and periimplantitis (late loss/failure) are clinical

terms that, respectively, describe a picture of early, transitory or

late breakdown of osseointegration (57). In recent years, thanks

to the better knowledge of immunologically caused tissue

responses, it is understood that these so-called “biological

complications” could be related, and it is possible that they

represent different manifestations of the same condition, that is,

a local peri-implant imbalance of the innate immune system,

either site specific (MBL) or involving the circumference of the

shield-off bone (10). Therefore, a possible mechanism may be

that a balanced plasticity in peri-implant macrophages could be

related to a long-term FBE. On the contrary, an increase in the

M1/M2 ratio (imbalance) could be behind peri-implant bone

loss, likely a clinical manifestation of an incipient or ongoing

FBR (Figure 4).
5.1 Primary or early failure

Primary failure is the clinical scenario where osseointegration

is never achieved. The frequency of such failures is low, in the

range of 0–2% in most clinical reports (57). Clinically, this

corresponds to oral implants that are found to be mobile at the

abutment connection, and already before the placement of the

definitive prosthesis and in the absence of other pathological signs.

The major histologic findings show that such implants are

surrounded by a connective tissue capsule. Also, in some cases,

an epithelial down growth is observed with epithelial cells attached

to the implant surface via hemidesmosomes (58).

In the field of bone biomaterials, it is known that a prolonged

M1 polarization phase leads to increased fibrosis-enhancing

cytokine release pattern by M2 macrophages, resulting in the

formation of a fibrocapsule (20). In fact, in an animal model of

osseointegration, a prolonged M1 polarization phase with high

M2 phenotypic activity was demonstrated around copper when

compared to titanium, and the formation of a fibrocapsule

around copper was observed (36). It is known that when M2

macrophages take an important pro-fibrotic role it is because the

lesion is persistent in that environment. M2 cell populations are

known to be able to secrete large amounts of pro-fibrotic factors

such as TGF-b and Galactin-3 (59). Interestingly, M2
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macrophages can also induce the epithelial-to-mesenchymal

transition (EMT) through TGF-b (60). EMT, in turn would

play a role in the development of fibrosis, as the matrix-

producing myofibroblasts arise from cells of the epithelial

lineage in response to injury (60). In this sense, a link has

been proposed between EMT, fibrosis and foreign body response

(61). In addition, M1/M2 imbalance on copper, could be related

to a non-enzymatic oxidation catalyzed by Cu2+ and the

generation of host-derived oxidation-specific epitopes, which

represent danger associated molecular patterns, DAMPs, whose

major mechanism of recognition is via pattern recognition

receptors (PRRs) primarily expressed on macrophages (62).

Therefore, a similar mechanism could hypothetically be related

to primary failures.

Indeed, several DAMPs and their accompanying PRRs have

been associated with the activation of inflammatory responses,

wound healing and biomaterial implantation, especially in non-

infectious environments. Recently it was demonstrated that the

inhibition of HMGB1 (prototypic DAMP) or receptor RAGE

impair osseointegration, resulting in a foreign body reaction

with persistence of M1 macrophages, necrotic bone, and the

presence of MNGCs (63). In turn, a prolonged M1 polarization

phase may be dependent on cytosolic multiprotein oligomers of

the innate immune system responsible for the activation of

inflammatory (inflammasome) activation, creating a pro-

inflammatory environment susceptible to bone resorption (64).

Specifically, the NLRP3 inflammasome senses a variety of signals

referred to as DAMPs, including those triggered by degradation

products of the extracellular matrix. Thus, the bone DAMP/

NLRP3 inflammasome axis has been proposed as a novel

mechanism that sustains bone resorption, mainly at conditions

of low-grade inflammation (65). In addition, low-grade

inflammation decreases access to oxygen and nutrients in

affected tissues. Hypoxia could then lead to tissue necrosis,

thereby increasing the local immunogenicity via the generation

of DAMPs (66). On the other hand, the epithelial downgrowth

observed on implant failures may therefore be related to the role

of M1/M2 macrophage balance in EMT/MET (mesenchymal

epithelial transition) plasticity (67).
5.2 Late implant failure

Late losses (after prosthesis placement) can sometimes be

attributed to overload and/or secondary corrosion, or to a

combination of these. In advanced failure cases, there is an

excessive loss of marginal bone, implant mobility and

interestingly, the presence of a stratified connective tissue

(capsule). Further epithelial downgrowth migration is observed

(58, 68). Recently, it has been shown that this could possibly be

due to the repolarization of both M1 to M2 and vice versa, and

that the macrophage phenotypes are defined by the current
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cellular microenvironment (24). Moreover, MNGCs present at

implant interfaces have also the potential to shift between pro-

inflammatory M1-MNGCs (often previously referred to as

FBGCs) and wound-healing M2-MNGCs polarization states,

whose precursor cells are thought to be derived from

osteomacs (69, 70). It is important to note that M1-MNGCs

may express a different repertoire or concentration of

inflammatory factors (cytokines and chemokines), which are

also time-dependent if M1-MNGCs switch towards an anti-

inflammatory phenotype. Therefore, the FBR could differ

between different biomaterials (71). In fact, the results of FBR,

such as chronic inflammation, excessive granulation, collagen

fiber deposition, and fibrous tissue formation, are related to the

persistence of a microenvironment with upregulation of genes

related to inflammation (IL- 1) and the ability of the biomaterial

to continue serving as an immunomodulator (72). These are

critical findings, because macrophages and other cells of the

innate immune system respond to a myriad of signals emanating
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from their local environments, including signals resulting from

the interaction between prosthetic byproducts and

periprosthetic cells (66).

DAMPs can be products of necrotic or stressed cells as

a result of long-term ischemia and/or toxic effects of prosthetic

debris. For this reason, several studies have examined the role

of DAMPs in periprosthetic osteolysis (PPOL) (66), as there

are several potential sources of ions and particles in implant

dentistry (73). Moreover, presence of organic and inorganic

contaminants onto some surfaces (74) and the potential

exposure of less stable elements such as vanadium and

aluminum after surface modification procedures, can also

trigger an inflammatory response (75). Regarding Ti ions and

particles, it is known that both can coexist in the peri-implant

environment. A recent study showed that metal particles

embedded in an experimental rat mandible defect triggered

chronic inflammation with a foreign body granulomatous

reaction characterized by the presence of histiocytes and
FIGURE 4

Implant-Osteoimmune interaction. Osseointegration is a condition of continuous and dynamic implant-osteoimmune interaction. If the implant
surface evokes an initial and long-term immunomodulation, interfacial bone is formed to shield off the implant from the tissues (FBE). In
addition, the M2 anti-inflammatory environment would induce adequate defense reactions to handle transient septic and aseptic threats
(PAMPs, DAMPs, Implant-derived Titanium particles (i-TiPs) ), which is clinically reflected with 10 year failure rates varying between 0-4%.
However, if it is continuous and of considerable size, the provocation and the consequent M1 inflammatory environment can generate
Inflammatory cytokines that alters the expression of RANK/RANKL axis, counteracting the ability of implant surface osteoimmunomodulation,
then a partial, progressive or total FBR can occur. Modified from Zetao Cheng, et al (ref.20).
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MNGCs, i.e, Ti metal particles induced a chronic inflammatory

cell infiltrate associated with a foreign body reaction (76).

Interestingly, new evidence suggests a spatiotemporal

distribution of macrophages in the FBR, therefore, a

microenvironment may exist or be created within and around

the biomaterial and that different macrophage phenotypes are

associated with these different spaces (77).

Human macrophages develop a specific response to Ti

particles. Upon contact, M1 exhibits increased production of

pro-inflammatory cytokines, chemokines and growth factors,

but a decreased phagocytic activity, while M2 macrophages have

been suggested to mediate particle uptake (78). This could be

related to the absence of MNGC or frustrated phagocytosis in

the vicinity of titanium particles in granulation tissue harvested

from peri-implantitis cases, as shown in a recent article, even

though there was a significantly higher expression of CD68 (79).

For example, it has been shown that proinflammatory M1

macrophages predominate in soft tissue biopsies from peri-

implantitis sites over M2 macrophages (80, 81). As indicated

in a recent paper (4), qPCR-techniques were used to verify such

immune responses. However, measurable foreign body reactions

are a shortlived phenomena and M1-MNGCs may not be

possible to study in chronic specimens as done in a recent

paper (79). In normal foreign body reactions, M1-MNGCs and

associated granulomatous tissue are formed at approximately 4

days after implantation, increase up to about 14 days, but

subsequently gradually disappear (82) to be replaced with

other immune derived reactions such as machrophage

responses. The M1 polarization observed in peri-implantitis

lesions also suggests a robust response by the immune system

against local factors; and thus, more tissue destruction (81). We

should keep in mind that reactive oxygen species (ROS) always

dissolve some Ti-oxide during an inflammatory phase. One

plausible interpretation is therefore that later dissolved

material is “shielded off” due to local immune activation, very

similar to the later shield off of macroscopic implants. Inflamed

tissues maintain a persistent low level of inflammation and

thereby enhance over time the dissolved material that

precipitates to particles and necessitate a response, a “shield

off” process, or alternatively, a low response due to

immunecompromized tissues in the vicinity of implants.
6 Marginal bone loss from
different perspectives

At present, it is thought that an increase or decrease in bone

response is related to implant mechanical stability and the initial

response modulated by the immune system (40). In fact,

macrophage ablation impairs woven bone formation around

oral implants (45), and the impact on the immune response by
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Vitamin D deficiency has been related to low early implant

healing (83). Furthermore, it is known that some intraoral sites

support osseointegration better than others. In this sense, studies

revealed a strong positive correlation between bone remodeling

rate, mitotic activity, and osteotomy site healing and high

endogenous Wnt signaling (84). Also, findings suggest a role

for an autocrine Wnt signaling in macrophages during the

immune response to implanted biomaterials (85).

Histologically, osseointegrated oral implants show a

heterogeneous interface with variable degrees of mineralized

bone-implant contact (BIC) (86). Therefore, in some cases, there

could be a mechanically weak bone-to-implant interface (87).

This is clinically relevant since functional loading and

mechanical strain are the main causes for bone remodeling.

Osteocytes are known to translate signals related to mechanical

strain into biochemical signals and largely regulate the

osteoblast–osteoclast axis. As a result, bone remodeling may

change the peri-implant crestal bone contours (87). In turn, the

macrophage-osteoclast axis is involved in regulating the balance

of bone remodeling and resorption that is essential for the

maintenance of normal bone morphology (88). On the other

hand, the rate of new bone formation depends also on proteins

secreted by macrophages that regulate undifferentiated

mesenchymal ce l l s to trans form to bone- forming

osteoblasts (89).

The activation of inflammatory processes is followed by

physiological bone repair mechanisms. However, there could

be typical individual mediator-related signaling patterns of

inflammatory cytokines. In this sense, a unique bone

remodeling situation appears to occur when fatty degenerative

tissue is present in the medullary cavity of the jawbone, which

could be related to a dysregulated programming in stem cell

expansion (90). Recent findings demonstrate that alveolar bone

monocytes/macrophages tend to express a high level of

oncos ta t in M (Osm), which promotes os teogenic

differentiation and inhibits adipogenic differentiation of MSCs

(44). Therefore, if there is a weak bone-to-implant interface,

associated personalized signal patterns, continuous stress signals

and immunogenicity of the elements present, there is a risk that

initially transitory and site specific peri-implant bone loss may

progress to a more damaging and vicious stage (91). Such a

mechanism may be especially evident at the marginal bone area.
6.1 Macrophage polarization and the
osteoimmunological mechanisms behind
marginal bone loss as a condition but
not as a disease

Macrophages are highly plastic cells that rapidly respond to

their microenvironment by adopting different phenotypes with

important roles in regulating the healing response to biomaterials.
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The prolonged presence of inflammatory M1 macrophages can

exacerbate tissue damage and prevent biomaterial integration. In

contrast, the immune response favorable to healing by M2

macrophages precedes osteoinduction. In recent years, an

increasing number of studies have investigated the response of

M2 macrophages to biomaterials. In fact, the interaction between

M1 and M2 dominated microenvironments and the temporal

modulation of the M1 to M2 transition provide an interesting line

of investigation to search for new therapeutic approaches focused

on the immune system to improve osseointegration. Such studies

include modification of implant surface properties, ionic-treated

implant surfaces with LiCl or Mg, use of polarizing cytokines such

IL-4 and mechanical stimuli to promote the innate

immunomodulatory capacities of BMMSCs (91).

Peri-implant tissues may thus be considered as an

immunologically active microenvironment with immunological

sentinels present such as macrophages modulated by neutrophils,

dendritic cells, T-cells, B-cells and MNGCs being able to activate

and direct an immune-mediated and controlled inflammatory

response (91). Furthermore, it is known that prolonged

inflammation plays a critical role in bone resorption, because

pro-inflammatory cytokines (such as IL-17A) (92) alter negatively

the RANK/RANKL axis balance (93). In this sense,

proinflammatory M1 macrophage polarization can be induced by

implant/wear debris, damage associated molecular patterns

(DAMPs), and pathogen associated molecular patterns (PAMPs),

resulting in the production of high levels of pro-inflammatory

cytokines (e.g. TNF-a, IL-1b, IL-6) through NF-kB activation. In

addition to secreting cytokines, M1 macrophages show potential to

differentiate into osteoclasts, and may serve as an osteoclast

reservoir. Conversely, M2 activation is often characterized by the

expression of anti-inflammatory cytokines (e.g. IL-4, TGF-b and IL-

10) and antigen presentation ability, suppress osteoclastic activity

and promoted osteogenesis through the inhibition of NF-kB
signaling pathway (94, 95). Although the mechanism underlying

the observed plasticity in macrophages is not well understood, It is

thought that macrophage polarization represents a “fluid state”. In

this regard, polarization reversibility is a target of therapeutic

interest, especially when the M1/M2 imbalance may compromise

the immune response (96). In a recent study, researchers analyzed

the subpopulations of M1 (CD68 and iNOS) and M2 (CD68 and

CD206) macrophage polarization through Immunofluorescence

staining, noting a statistically significant increase in population of

macrophage M1 phenotype from peri-implantitis samples

compared to periodontal disease samples. In the same line, an

immunohistochemical analysis showed a significantly higher

expression of M1 (CD80) inflammatory phenotype at advanced

peri-implantitis sites (80, 81). These studies correlate the increase of

the M1/M2 ratio with a high response of the immune system

against local signals in the cases of peri-implant lesions, which could

possibly play a critical role in the underlying pathogenesis of peri-

implant bone loss (80, 81).
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6.2 Implant-abutment site and marginal
bone loss

The connections of various implant components to the top

of the implant and their emergence from the body’s hard and

soft tissues have implications for tissue attachment and turnover.

Generally, components are placed, removed and replaced on

multiple occasions including closure screws, healing caps,

temporary abutments, final abutments and temporary and

final restorations. These component placement and removal

procedures not only prevent stable soft tissue attachment onto

the implant component but also provide an avenue for fretting

and galvanic corrosion, and bacterial access to interfaces

including the interface at the top of the implant. Many studies

have documented bacterial contamination of these interfaces

regardless of whether the connections are internal or external to

the implant (97). These contaminated interfaces therefore

provide an ecological niche for bacterial colonization and their

products such that the host response is unable to eliminate or

mitigate the bacterial challenge. As such, the host must provide

an immunological response adjacent to the interface. Clinicians

generally place the top of a bone level or “submerged” implant at

or slightly below the crest of the bone meaning that a bacterially

contaminated interface, and consequently, a host inflammatory

reaction is located directly at the marginal bone level.

Broggini et al. (98) documented that a peak of inflammatory

cells was located approximately 0.50 mm coronal to the interface

in tissues adjacent to the implant. This inflammation consisted

primarily of neutrophilic polymorphonuclear leukocytes

indicative of a persistent acute inflammatory reaction at the

marginal bone level. Mononuclear cells were evenly distributed

along the implant surface, and this inflammation was associated

with bone loss. Interestingly, the absence of an interface at the

bone level (using a tissue level or “non-submerged” implant)

resulted in only sparse cells and no peak of inflammation at the

marginal bone level and minimal bone loss (98). The peri-

implant cellular infiltrate immediately coronal to the implant-

abutment interface decreased gradually and progressively in the

soft tissues toward either bone or gingival epithelium. This study

provided histomorphometric data that a unique pattern of

inflammatory infiltrate develops adjacent to implant interfaces

with associated bone loss. The differential pattern of peri-

implant neutrophil accumulation suggests that the bacterial

accumulation at the interface results in a chemotactic stimulus

that both initiates and sustains the recruitment of inflammatory

cells. Such activation of the host defense system (such as

cytokines, complement, and antibodies) can result in a

gradient of inflammatory cells perpetuating an acute

inflammatory process which is exacerbated by an inability to

access the interface for oral hygiene (98). This study, in addition

to documenting the intense inflammatory process, also

demonstrated significantly greater bone loss around implants
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with an interface at the marginal bone level compared to

implants without such an interface (98). It was hypothesized

that the interface at the marginal bone level leads to microbial

leakage, colonization and a persistent bacterial presence. The

chemotactic signaling promotes a sustained neutrophil

accumulation and, in parallel, mononuclear cells are recruited

to the surface. The combined and sustained activation of

inflammatory cells can then promote osteoclast formation and

activation resulting in marginal bone loss.

Another study compared the distribution and density of

inflammatory cells surrounding implants with an implant-

abutment interface placed supracrestally, at the crest or,

subcrestally and correlated that with bone loss (99). This study

revealed that, in spite of location, all implant interfaces had a

similar pattern of peri-implant inflammation. That pattern

consisted of polymorphonuclear leukocytes concentrated at or

immediately coronal to the interface. Interestingly, peri-implant

neutrophil accumulation increased progressively as the interface

depth increased and marginal bone loss was significantly

correlated with inflammatory cell accumulation, i.e. the deeper

the interface, the greater the magnitude of peri-implant

inflammation (99). In contrast, mononuclear cells were

relatively uniformly located along the entire surface of the

implants. Furthermore, there was significantly greater bone

loss associated with subcrestal implants compared to implants

placed at the crest or supracrestally. These findings reveal that

the implant-abutment interface defines the degree of

inflammatory cell accumulation and its location in the tissues

and, suggests that the inflammatory cells contribute directly or

indirectly to the extent of marginal bone loss (99).

The study above identified a highly significant relationship

between the degree of peri-implant inflammation and the

magnitude of marginal bone loss. A number of previous

studies have also demonstrated a spatial relationship between

inflammation and bone loss supporting the observed association

between contaminated implant-abutment interfaces,

inflammatory cell infiltrate accumulation and marginal bone

loss (100, 101). In the late 1970’s, Waerhaug (100) described in

periodontal disease an “extended arm” of inflammation while

Garant (101) described an “effective radius off action” of

inflammation to bone loss. More recently, Graves and

Cochran (102) described such a relationship as an

“inflammatory front” where an increase in the host

inflammatory response resulted in an increase in bone loss.

This cause-and-effect relationship was demonstrated with

inhibitors to the pro-inflammatory molecules IL-1 and TNF-

alfa (103). This spatial relationship between inflammation and

the immune system and bone has resulted in an area of science

referred to as “osteoimmunology” as noted above and involves

the science related to osteoclast development (104, 105). Taken

together, these studies demonstrate that the location of an

implant-abutment interface can be an important determinant
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of marginal bone loss as has been noted when evaluating

marginal bone loss for implant success (106) where up to a

mean of 1.5 mm of marginal bone loss was allowed for in the first

year after implant placement.

In summary, bacterial-induced inflammation and corrosion

may together with other factors contribute to MBL by jointly

affecting peri-implant bone rather than as isolated factors.

Secondary corrosion is a late implant response that may, in

clinical cases which have previously resulted in some MBL,

facilitate a transitional shift in the immune system from being

a sentinel of implant shield off, to implant rejection, even if this is

not an inevitable outcome of secondary corrosion (107) that will

be discussed in greater detail under next heading.
7 Peri-implant phenomena involved
in osteoimmune regulation

7.1 Implant passivation layer

The coronal portion of the implant exists in a spatially

s ingular s i tuat ion where i t interacts direct ly and

simultaneously with the oral microenvironment (Figure 5), the

peri-implant soft tissue barrier. As discussed previously in this

article, no biomaterial is fully bioinert. However, select non-toxic

biomaterials such as titanium can achieve a homeostatic state

within the peri-implant tissues enabling a long-term functional

stability (108). This state is dynamic and contingent upon the

biomaterial’s capacity to reach an electrochemical equilibrium,

while present in biological fluids. For titanium biomedical

implants, the success of primary osseointegration is dependent

upon the establishment of a surface “passivation” layer (109,

110). The chemical composition of this layer is distinct from that

of the underlying metal, being mainly (>98%) composed of

titanium dioxide, TiO2. The passivation layer is formed rapidly

but not instantly on titanium surfaces under atmospheric

conditions and protects from further passive oxidation of the

implant. Therefore, it contributes to the long-term stability of

the implant within the tissues without further corrosion. The

establishment and development of the passivation layer is also

dynamic and the electrochemical changes that occur due to

insertion of the implant in an osteotomy within the bone result

in electrochemical changes that move hand in hand with the

process of osseointegration. During successful osseointegration

the passivation layer thickness maximizes, while a direct bone-

to-implant contact is established and maintained (110).

Importantly, osseointegration is achieved between the titanium

passivation layer and host bone cells, and not between the

underlying metal and host tissues (111). In fact, no published

data has ever shown cellular attachment on titanium surfaces

without protective passivation layers.
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In essence these electrochemical changes that occur at the

titanium surface represent a controlled primary corrosion of the

metal under the definition of passivation as the “conversion of a

refined metal into a more chemically stable form, such as the

spontaneous formation of an ultrathin film of corrosion

products, known as a passive film, on the metal’s surface that

act as a barrier to further oxidation” (112). As mentioned

previously (see Figure 2) immune and bone cell populations

respond to these early electrochemical events that occur during

implant osseointegration with a specific role being played by

alveolar macrophages during the early stages of osseointegration

(4, 45). In addition to the direct signaling of the RANKL-OPG

pathway that occurs in response to the surgical trauma induced

to osteocytes during implant placement, at least two

independent in vivo animal models have demonstrated that

the first two- (rat model) (45) to four-weeks (rabbit model) (4)

of the osseointegration phase are dominated by CD68+

macrophages expressing both M1 and M2-related genes,
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suggestive of a inflammation-driven remodeling. Depletion of

macrophages in the rat model led to compromised osteogenesis

during early osseointegration, highlighting the central effect that

immunity has in regulating the biomaterial-bone interface (45).

The important role of implant surface passivation in ensuring an

optimal tissue response to the implanted metal is evidenced by

the fact that when the implant passivation layer thickens, as in

the case of Mg-oxidized implants (113, 114), that increased

thickness of the passivation layer provides improved

bone anchorage.
7.2 Implant-soft tissue barrier with focus
on inflammation and primary corrosion

When discussing host immune/inflammatory responses to

biomaterials it is important to destigmatize the term

“inflammation” because it has traditionally been linked to the
FIGURE 5

Two critical sites involved in marginal bone loss exist at the coronal aspect of the implant where it emerges through the bone and soft tissues.
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host defense process against harmful microorganisms. However,

it is now well established that inflammatory responses are part of

host physiology and are necessary processes to regulate tissue

and organ function, wound healing and cell death. Inflammation

is therefore critical to eubiosis (115) and not necessarily results

in tissue destruction (116). Inflammatory responses only become

implicated in the pathophysiology of diseases when they become

deregulated, non-resolving and as a result become chronic. In

the context of implant biomaterial-host equilibrium, successful

osseointegration is characterized by a controlled immune/

inflammatory response that is critical to peri-implant wound

healing and, in most cases, resolves timely to allow chronic

immune surveillance to aid in maintaining tissues homeostasis.

Nonetheless, if the tissue environment is not conducive to the

electrochemical stability of the titanium passivation layer,

destructive corrosion can occur leading to titanium dissolution

from the implant surfaces (107, 108). Wennerberg et al. (117)

addressed the extent of primary corrosion during the

osseointegration of titanium implants with various surface

modifications by artificial material aging in solution for 1-

month at atmospheric conditions. None of the implant

surfaces exhibited dissolution of titanium from the surface

during the experiment in buffered saline suggesting that an

electrochemical equilibrium is rapidly established and

sustained under favorable conditions, which resemble healthy

tissue, i.e. oxygen availability, neutral pH=7.3 (117). However,

when the same surfaces were placed in strongly acidic lactate

solution (pH=2.3) and aged for 1 month up to 250ng of

dissolved titanium were identified in solution (117). Therefore,

aggressive electrochemical conditions, such as a strongly acidic

environment or chemically reductive conditions, may lead to

electrochemical instability of the passivation layer and titanium

release in vitro even in the absence of bacterial and frictional

challenges (107). Vascular interruption as a result of surgical

trauma in the case of implant placement is another example of a

micro environmental factor that may contribute to

electrochemical instability. In corroboration, a separate study

(118) showed that the corrosion resistance of titanium is

diminished under inflammatory conditions that included

oxidative attack by reactive oxygen species (119), acidic

environment (pH~3) and reduced oxygen availability

(anaerobic conditions in peri-implant pockets) (118). Among

these environmental factors, lack of oxygen achieved by de-

aeration was the strongest determinant of diminished

e lec trochemica l impedance (118) . Al though these

environmental challenges have been described from a

biomaterials viewpoint, it is clear that they are bidirectional

and affect the host tissues as well. When the electrochemical

equilibrium on the titanium passivated surface is displaced,

more titanium ions are generated and dissolved in tissue

fluids. It has been suggested that these titanium ions rapidly

aggregate in protein-rich fluids forming highly biologically

active titanium microparticles (119, 120).
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7.3 Implant passivation layer and
secondary corrosion

When the chronic electrochemical oxidation of titanium leads

to gradual destruction of the passivation layer, the effects of

corrosion are not limited to the biomaterial but also affect

osteoimmune regulation of osseointegration. This has been

evidenced by two recent studies (108, 121) from independent

research groups showing that abrasive dental treatments, such as

ultrasonic instrumentation with steel instruments used to clean

the implants surface, leads to destructive corrosion. This can be

regarded as secondary corrosion when compared to the primary

oxidation, i.e. corrosion, which occurs during healing of implants

and has a protective effect in most cases via the formation of the

passivation layer. In the case of secondary corrosion, the resulting

damage to the passivation layer results in accelerated titanium

release from the implant surface to the tissues with detrimental

effects locally and deregulation of the osteoimmune axis (107,

108). It was long thought that the scratch exposed metal would,

however, be re-oxidized in water/air within tens of milliseconds to

seconds (122) as the re-passivation of titanium in water or air is an

undoubtable scientific fact. Nonetheless, it is not translational to

the dental implant clinical reality. Earlier studies were conducted

in atmospheric conditions or in water but neither of these

conditions represent the microenvironment of the peri-implant

pocket. As a result, the fallacy that clinicians can damage the

implant surfaces to “clean” them from bacterial biofilm was

developed under the assumption that the titanium passivation

layer will re-passivate after abrasion within milliseconds (108).

Conversely, Berbel et al. (108) showed that when replicating

anaerobic inflammatory conditions that exist in the peri-implant

pocket to repeat these experiments, scratching of the passivation

layer for cleaning resulted in long-term reduction in corrosion

resistance. These changes led to secondary corrosion appearing as

microgranular corrosion on the titanium surfaces (108, 118). In a

subsequent paper it was further shown that these abrasions of the

passivation layer led to vastly accelerated titanium release to the

environment in simulated body fluid during titanium aging. As

such, it is imperative to highlight that the notion that titaniumwill

rapidly re-passivate does not stand true under clinical conditions.

These findings have important clinical ramifications to avoid

initiation or perpetuation of peri-implantitis due to iatrogenic

reasons, such as preventive abrasion of implants with steel

instruments to remove bacteria. Importantly, the released

implant-derived Titanium Particles (i-TiPs) cause fibroblast

cell death and activate macrophages towards an M1 phenotype

(108, 121). Importantly, the persistent effect of i-TiPs activates

inflammasomes in immune cells that lead to IL-1b release

through activation of the complement system (4, 123, 124). As

discussed above, IL-1b is a major osteoclast activating factor and

provides a means of communication from immune and tissue

resident cells to the local bone eliciting osteoclastic

differentiation with destructive downstream effects. Therefore,
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the biological plausibility exists for regarding the electrochemical

instability of the titanium surface occurring either through

tribocorrosion (i.e. surface transformations resulting from the

interaction of mechanical loading and chemical/electrochemical

reactions), local chemical attack (ROS or Fluorides) or damage

by dental implant instruments as a potential cause of marginal

bone loss within the implant-soft tissue barrier Interface.
8 Synergistic activation of pro-
inflammatory pathways

Macrophages and other cells of the innate immune system

respond to a large number of signals emanating from their local

environment; therefore, the inflammatory potential can be

multiplied due to the synergistic activation of pro-

inflammatory pathways. As described above, proinflammatory

M1 macrophage polarization can be induced by implant/wear

debris, DAMPs, and PAMPs (95).

It appears that titanium particles do not tend to be

encapsulated in the tissues around dental implants, but instead

migrate through peri-implant tissues causing immune reactions,

with smaller particles tending to produce greater toxicity and

enhanced pro-inflammatory response (125). In relation to this, it

is known that particles of a diameter smaller than 1 µm, or

nanoparticles, generate the most biological toxicity and can

induce cellular mutations. In a recent study, it was shown for

the first time that Titanium nanoparticles (TiNPs) affect

the transcriptional program in human macrophages (GDF-15

over-production and strong suppression of stabilin-1), which

could interfere with the long-term integration of the implant

through the imbalance between inflammation and healing

processes (126).

While the molecular mechanism of DNA damage induced

by TiO2 NPs is unknown, it is suggested that exposure to TiO2

NPs causes aberrant DNA methylation levels that can lead to

unusual gene expression, altering epigenetic integrity (127).

It is observed that the macrophage reactivity upon activation

by wear particles is driven by cell membrane contacts through

surface receptors, such as CD14 and TLRs (128), or through the

phagocytosis of wear debris and the stimulation of the NALP3

inflammasome(NLRP3, Cryopyrin) (129). In bone and its

surrounding tissues this results in an influx of immune cells,

osteoclasts and other cells. The resulting pro-inflammatory

environment leads to increased bone destruction and

suppressed bone formation (130).

It is not known in detail how these molecular and cellular

interactions translate into a specific biologic response of either

inflammation or tolerance in a particular patient (66). However,

the osteo-immune response could be conditioned not only by

local and systemic oxidative stress but also by the local

innervation state (Figure 6). In support of the latter, recent in
Frontiers in Immunology 14
vivo experiments using Ti-implants in rat femur indicated

strongly that neural regulation of bone directly modulates its

formation and, as a consequence, osseointegration (131). The

significance of this finding is not currently understood, but

almost certainly there exist tight connections to the immune/

inflammatory system. It is well known that both the

inflammatory reaction and the wound healing process are

intimately connected to changes in the redox balance, and

even though at low concentrations, oxidative stress exhibits

various physiological roles. Upregulation of Reactive Oxygen

Species (ROS) production and persistence over a long period of

time can then prove to be harmful to the host (132). In fact,

recent discoveries, have demonstrated a link between oxidative

stress and an aberrant innate immune system response in sterile

inflammatory diseases (133).

The general presumption that biomaterial implantation

allows opportunistic bacteria to flourish by providing a surface

for biofilm formation likely is biased. The dysregulated host

response opens the opportunity for bacteria to invade immune

compromised tissues and hence contribute to the susceptibility

of implants to infection (37). In this sense, the beginning of

understanding bone loss as a condition is a great paradigm shift

that allows osseointegration to be considered from a different

point of view. Reincorporating oral implantology to the field of

biotechnology where the emergence of omic sciences such as

implantogenomics (134), epigenetic effects of nanoparticles

(135) and advanced immunomodulation (136) acquire

enormous relevance when maintaining implant health in

our patients.
9 Concluding remarks

Since periodontitis may cause loss of teeth, peri-implantitis

was assumed to cause loss of oral implants with increasing time

of follow up. Accelerating loss of marginal bone around implants

was, therefore, regarded as a disease that logically, as it seemed,

would best be treated by a similar type of surgery as

periodontitis. One cannot blame the doctor for interpreting

the numerous bacteria present in the end stage of bone

resorption to be what caused the problem in the beginning,

since there was no alternative explanation for this development

that was known at the time.

However, today we have identified alternative explanations

behind implant threatening bone loss; adverse immune reactions

that can be demonstrated to be behind failure of oral as well as

orthopedic implants (11, 137). The science of osteoimmunology is

relatively new and has been established first in our new millennium

andmainly after the initial attempts to couple all marginal bone loss

to a bacterial disease. Furthermore, we recognize today that teeth are

natural parts of our human bodies whereas implants represent

foreign bodies with clearly measurable immune reactions (4). It is to
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1056914
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Albrektsson et al. 10.3389/fimmu.2022.1056914
no great surprise that investigators have demonstrated clear

differences between periodontitis and peri-implantitis (107, 138).

One study compared teeth and implants in the same jaw of patients

and found that when teeth lost bone, implant bone level was stable

and, conversely, when implants lost bone, teeth bone was stable. In

only 3% of cases was there simultaneous bone loss around teeth and

implants reported (139). Surgery for what has been seen as

threatening marginal bone loss around oral implants have, at

best, presented questionable clinical results with a clear tendency

of causing more patient problems than non-surgical approaches
Frontiers in Immunology 15
(43, 140). In addition, implants with a diagnosed state of alleged

disease at a mean of 12.5 years after placement (141) were re-

investigated 9 years later when it was demonstrated that 91.4% of

the allegedly sick implants had seen no further bone loss and 95.3%

of the previously as sick declared implants still functioned in the jaw

of the patients (142). In another study, a decreased risk for oral

implant losses with increasing time was reported (143). Increasing

plaque index was found associated with lower levels of MBL (144)

and Menini et al. (52) was unable to find any MBL associated with

increasing plaque index in an up to 14 year followed up clinical
FIGURE 6

Common molecular pathways and environmental signals. (A, B) Toll-like receptors (TLRs) and other types of pattern recognition receptors
recognize PAMPs and DAMPs and trigger inflammation via the activation of the transcription factor NF-Kb. Signaling pathway that requires the
adaptor molecule MyD88. (C) In addition, inflammation in response to necrotic cells is mostly mediated by IL-1 receptor (IL-1R), which leads to
NF-kB activation. (D) On the other hand, titanium particles can induce acute inflammation due to activation of the NALP3 inflammasome,
which leads to increased IL-1 secretion and IL-1-associated signaling. Process mediated by protein complexes such as the Arp 2/3 complex.
Also, titanium ions can bind to proteins, such as albumin or transferrin, creating a bioavailable metalloprotein that could serve as an antigen in
immunological reactions. (E) Activation of NF-kB , the master inflammatory transcription factor. (F) Macrophages and other cells of the innate
immune system respond to a large number of signals emanating from their local environment, therefore, the inflammatory potential can be
multiplied due to the synergistic activation of pro-inflammatory pathways. In this sense, it is known that the crosstalk between the skeletal
system and the immune system can lead to osteoclastogenesis, for example, through IL-1. A specific biologic response of either inflammation
or tolerance in a particular patient could be related to local and systemic oxidative stress, and other basal states, such as the state of local
innervation. All these possible cellular and molecular mechanisms would be constantly counteracted/balanced by both the long-term
immunomodulatory capacity of the implant and the dynamic osteo immune environment. (Modified from Goodman SB, et al. ref. 66).
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study. There are indeed several reasons for MBL which are most

difficult to explain with a primary infection etiology. These

situations include MBL associated with the responsible surgeon or

prosthodontist (53), MBL associated with intake of pharmaceutical

products (145) and at least initial MBL due to accidental presence of

cement in the soft tissues. However, the latter example is of dual

nature; MBL due to (nano-micron sized) cement particles will

immediately stop if the cement is removed, indicative of this bone

loss being immune driven since bacterial actions would not

disappear instantly. However, if cement is not removed in time,

then the immune system may start a rejection phenomenon

whereby a secondary infection will ensue. Taken together, the

evidence for functioning, osseointegrated implants suffering from

an infectious disease is insufficient. The paradigm shift is that we

today know that implants are not bio-inert as previously believed

(146); instead an immune system activation follows the placement

of an oral implant (4). The immune system has two ways of

responding to an implant; either to embed it in bone to protect

other tissues (bone shield off; osseointegration) or rejection of the

foreign body (3). In the great majority of cases there will be an

immune system caused shield-off of the implant. Some marginal

bone loss can be monitored by the immune system control of the

osteoblast/osteoclast combined action (10). A more dangerous

development would be if the immune system is overwhelmed by

implant threatening attacks; it may then shift over to rejection of the

oral implant.

This view does not exclude the role of infection in particular

cases. When the implants have a maintained immune-caused

shield-off, there appears to be bacterial protection. However,

there may be situations when this protection may not be active

and then a direct infection with subsequent MBL is a possibility

that can be exemplified by broken implant components where

parts of the implants are not stable. Further, we cannot exclude

situations when the immune system is overwhelmed by bacteria

that then may act as a regulator of the osteoimmune system, e.g.

if the immune system is compromised in some way and the

normal bacterial flora becomes pathogenic. Bacterial presence

may be controlled by the immune system, but the bacteria will

always be present and do not disappear. Therefore, in the age of

osteoimmunology, one must always remember that, under the

right circumstances, it would be sufficient with only a few surface

located and slime protected bacteria to cause infection and

severe tissue problems, e.g. as described via the “race for the

surface” mechanisms (147).
10 Conclusions
Fron
1. Osseointegration is needed for oral implant function.
tiers in Immunology 16
2. Recent advances in osteoimmunology suggest that

osseointegration is an osteoimmune defence reaction,

more than a simple bone repair process.

3. The bone-anchored implant integration process should

in the future be termed“the immunoinflammatory

process” instead of only the “inflammatory process”.

In this process the innervation development adjacent to

implants is also important.

4. Osteoimmunological mechanisms underlie marginal

bone loss (MBL) as a condition, not a disease.

5. The immune system is capable of causing MBL through

its control over the osteoblast/osteoclast coupled

function.

6. As far as is known today, bacteria may affect oral

implants secondarily once a rejection reaction by the

immune system has been initiated. Local bacterial

reactions, not affecting implant stability, may occur

adjacent to leakage from the abutment implant

connection.

7. Patient related factors such as smoking, consumption of

certain pharmaceuticals and genetic disorders as well as

surgical and prosthodontic techniques, local microbes,

foreign bodies such as small cement particles, primary

corrosion and implant fractures can cause MBL

monitored by the immune system. Secondary

corrosion may later add to these oral implant survival

challenges that, taken together, may, lead to a shift in the

immune reactions from bone shield-off to rejection of

the implant.
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BIC bone-implant contact

BMMSC bone marrow mesenchymal stem cell

BMU basic multicellular unit

CD68 cluster of differentiation 68

DAMP danger associated molecular pattern

EMT epithelial-to-mesenchymal transition

FBE foreign body equilibrium

FBGC foreign body giant cell

FBR foreign body response

GDF-15 growth/differentiation factor 15, a member of transforming
growth factor beta family

HMGB1 High mobility group box 1 protein

IL-4 interleukin 4

iNOS inducible nitric oxide synthase

i-TiP implant-derived titanium particles

M1 macrophage phenotype 1, pro-inflammatory

M2 macrophage phenotype 2, pro-regenerative

MBL marginal bone loss

MET mesenchymal epithelial transition

MNGC multinucleated giant cell

MSC mesenchymal stem cell

NF-kB nuclear factor-kB (NF-kB), a transcription factor

NLRP3 NLR family pyrin domain containing 3

NP nanoparticle

OPG osteoprotegerin

Osm oncostatin M

PAMP pathogen associated molecular pattern

PPOL periprosthetic osteolysis

PRR pattern recognition receptors

PTH parathyroid hormone

RAGE receptor for advanced glycation end products, a pattern
recognition receptor

RANK receptor activator of nuclear factor k B

RANKL receptor activator of nuclear factor k B ligand

ROS reactive oxygen species

scRNA-
seq

single cell RNA sequencing technology

(Continued)
F
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TGF-b transforming growth factor

TLR toll like receptor

TNF-a tumor necrosis factor alfa

Wnt evolutionarily conserved paracrine or autocrine signaling
pathways
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